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We adapt fluorescence correlation spectroscopy (FCS) formalism to the studies of the dynamics of
semiflexible polymers and derive expressions relating FCS correlation function to the longitudinal
and transverse mean-square displacements of polymer segments. The obtained relations do not
depend on any specific model of polymer dynamics. We use the derived expressions to measure the
dynamics of actin filaments in two experimental situations: filaments labeled at distinct positions
and homogeneously labeled filaments. Both approaches give consistent results and allow to measure
the temporal dependence of the segmental mean-square displacement over almost five decades in
time, from ~40 us to ~2 s. These noninvasive measurements allow for a detailed quantitative
comparison of the experimental data to the current theories of semiflexible polymer dynamics. Good
quantitative agreement is found between the experimental results and theories explicitly accounting
for the hydrodynamic interactions between polymer segments. © 2006 American Institute of

Physics. [DOI: 10.1063/1.2244550]

I. INTRODUCTION

Living cells have remarkable mechanical properties
which enable them to move, divide, and respond to external
stresses. These properties are mainly attributed to the dy-
namical characteristics of the cell cytoskeleton, which is a
complex three-dimensional network of protein filaments
mostly comprised of F-actin and microtubules. Both types of
filaments are the polymerized forms of monomeric protein
subunits: globular actin (G-actin) and tubulin, respectively.
The cytoskeleton derives its strength from the elastic prop-
erties of these biopolymers, which, unlike synthetic poly-
mers, are characterized by a high bending rigidity.

The polymer rigidity is described by a persistence length
1, above which thermal fluctuations can efficiently bend the
polymer. Semiflexible polymers such as F-actin and micro-
tubules have a long persistence length: [,~17 um for
F-actin' and several millimeters for microtubules, orders of
magnitude larger than those of synthetic polymers. The large
rigidity of these biological polymers enables us to experi-
mentally address the fundamental questions of polymer dy-
namics at the subpersistence length scales. The dynamics and
the mechanical properties of F-actin and microtubule net-
works were studied by different optical techniques, such as
dynamic light scattering,2 fluorescence imaging,3’4 diffusive
wave spectroscopy (DWS), and microrheology.s_9
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One of the most detailed features of polymer dynamics
accessible in experiments is the kinetics of monomer motion
measured by the temporal dependence of monomer’s mean-
square displacement (MSD) (Ar(¢)). For length scales be-
low the persistence length, the monomer displacements are
anisotropic with a major contribution coming from the trans-
verse modes (displacements perpendicular to the polymer
contour) and only a minor contribution from longitudinal
modes. Theories'*"’ predict that the kinetics of transverse
motion, and thus the overall monomer’s MSD, should follow
the power law dependence of (Ar?) o134,

A feature related to the monomer MSD, the time depen-
dence of the longitudinal fluctuations was obtained by mea-
suring the end-to-end distance of individual actin filaments
visualized by fluorescence video microscopy.4 Although the
data are consistent with theoretically predicted dependence,
the temporal resolution of video microscopy limits the mea-
surements to time scales larger than 80 ms and thus the over-
all range of «#** dependence spans over one order of mag-
nitude in time only.4

A wide range of time scales was assessed using DWS
and microrheology of micron-sized beads inserted into the
F-actin mesh.”® The (Ar2)o¥* scaling was observed from
~10 us to ~ 10 ms. However, it is not quite clear how the
MSD of a bead is related to the actual monomers’ displace-
ments. While the beads” motion depends on the properties of
the mesh, the beads themselves may affect the dynamics of
the filaments, e.g., via their large friction coefficient.” In par-
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ticular, the monomer kinetics measured by fluorescence
video microscopy4 is two orders of magnitude faster than the
motion of the beads measured by DWS.’

Here we present a new noninvasive approach to measure
the monomers’ MSD in stiff filaments: the filaments are
tagged with fluorescent labels and the segmental dynamics of
the filaments is then followed with fluorescence correlation
spectroscopy (FCS) technique. We show that FCS correlation
function is directly related to the temporal dependence of
monomers’ MSD (Ar%(f)). The measurement of the FCS cor-
relation function allows us to obtain the kinetics of F-actin
monomer motion over a wide range of time scales, from
40 ws to 2 s. Previously, the same method was used to study
monomer dynamics in DNA polymersl&19 and also very re-
cently to study the internal dynamics of F-actin.’ While in
terms of the experimental technique our method is similar to
that of Winkler e al.,”® our approach to analysis of FCS
measurements differs from theirs significantly. Winkler et al.
base their analysis on a specific model of semiflexible poly-
mer dynamics12 which, in particular, assumes isotropic
monomer motion. They derive the predictions of this model
for FCS correlation functions and fit them to the measured
correlation functions directly.

In contrast to the approach of Winkler ef al. we derive a
formalism relating monomer MSD to FCS correlation func-
tions in a model-independent manner, and then compare
measured (Ar?(¢)) with the predictions of different polymer
dynamic theories. While the standard formulas of FCS can
be applied to double-stranded DNA, new expressions relat-
ing FCS correlation function to monomer MSD have to be
derived for stiff filaments such as F-actin and used to analyze
experimental data. The main reason for that is the large dif-
ference in the persistence lengths of DNA and F-actin. In
general, the dynamics of a semiflexible polymer is aniso-
tropic: the segmental motions transverse to the filament are
larger than longitudinal displacements. This anisotropy is
lost at the length scales above polymer persistence length.
For DNA, /,~50 nm is much smaller than typical dimen-
sions of FCS sampling volume (~500 nm) and the expres-
sions implying isotropic dynamics can be used in all of the
dynamic range probed by FCS. For actin filaments with
l,~17 um the situation is reversed and the anisotropy of
segmental motion has to be taken into account explicitly.

In the next section we derive the FCS expressions for
anisotropic motion of stiff filaments. Although the segmental
motion is dominated by the transverse component, for the
sake of generality, we will derive expressions which take into
account explicitly both transverse and longitudinal displace-
ments. Then we use these expressions to analyze the results
of two sets of experiments with different labeling strategies:
(1) partially (or locally) labeled filaments (obtained via po-
lymerization of nonfluorescent monomeric actin on fluores-
cent seeds) and (2) homogeneously labeled filaments (ob-
tained by polymerization of F-actin from a mixture of
labeled and unlabeled actin monomers). We note that the
second labeling strategy is similar to that used by Winkler et
al.® The analysis of the experimental data with the expres-
sions appropriate to each of these cases gives consistent re-
sults on temporal dependence of monomer’s MSD. Finally,
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the experimental data are compared to theoretical predictions
for the dynamics of semiflexible chains. The results are in
qualitative and quantitative agreement with the theories tak-
ing into account hydrodynamic interactions between the
polymer segments.““5

Il. THEORY

FCS techniqueﬂ_23 (reviewed in, e.g., Refs. 24-27) is

based on monitoring fluctuations &l (¢)=Ioym— (e in fluo-
rescence emission I,,,(¢) as fluorescence species diffuse in a
spatially restricted excitation field, formed typically with the
help of confocal optical scheme.” The autocorrelation func-
tion G(1)=(l.,(0)dl.,, (1)) of emission fluctuations reflects
the kinetics of motion of fluorescent sources.

In this section we adapt the general formalism of FCS to
the case of dynamics of linear stiff polymers and derive ex-
pressions relating FCS correlation function to the temporal
dependence of MSD (Ar(#)) of polymer segments.

The instantaneous detected emission, average emission,
and the correlation function of fluorescence fluctuations are
found through the spatial distribution ¢(r,) of fluorescent
labels and excitation-detection profile /(r),?

i =0 [ drtwrcten,
1)
) = 07 f dri(e),

G(t):szdrdr’I(r)I(r’)(éc(r,O)5c(r’,t)), (2)

where Q is specific brightness of a fluorescent molecule de-
pendent on fluorophore properties and the efficiency of de-
tection optics, c={c(r,t)) is the average concentration of
fluorophores, and c(r,t)=c(r,r)—c. Following Ref. 29 Eq.
(2) can be rewritten as

7T3 2 _
G(n) = %fdq|1(q)|2<55*(q,0)55(q,t)>, 3)

where “tilde” denotes spatial Fourier transform of the

corresponding  quantities, such  as, eg., I(q)
=2m) 32 [drI(r)e™™, and V is the total volume of the
sample.

We assume that fluorescent molecules are not moving
independently but are attached to relatively large objects
which themselves move independently of each other. We will
further assume that the objects are statistically equivalent
and that the distribution of fluorophores within each object
with respect to its center of mass is described by ®(r,5(z)),
where §(7) denotes the set of internal degrees of freedom
describing the current conformation and the orientation
of the object. Then c(r,1)=2®(r—r,(1),5,(t), &(q.1)
=Ej<1~>(q,§j(t))e‘iqrf(f), where r;(#) and §;(r) define, respec-
tively, the center-of-mass position and internal conformation
of object j at time ¢. Finally, substituting these formulas in
Eq. (3) we have
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G() =(2m)’Q*n f dq|1(q)|X D" (q,5(0))
X D(q,5(1))e a0y (4)

where 7 is the average concentration of the objects (number
of objects per unit volume), Ar(¢)=r;(t)—r;(0) is the dis-
placement of an object, and the index j was omitted every-
where in Eq. (4) due to the statistical equivalence of the
objects.

In its general form Eq. (4) can be applied to any objects
which have some internal structure and internal dynamics.

We assume now that the objects are uniformly labeled
segments of semiflexible polymers (one labeled segment of
length L per polymer; total polymer length /, in general, is
larger than L, i.e., polymers may contain unlabeled parts).
For sufficiently stiff polymers, we can neglect the dynamics
within the labeled segments and consider them to be straight.
In this case the set of internal degrees of freedom § reduces
to a unit vector s defining the orientation of the segment.
Within the same approximation we can assume that any
given labeled segment moves without change in its orienta-
tion s;(0)=s,(r). We will discuss in detail the validity of our
assumptions at the end of this section. Here we just note that
although these assumptions may look prohibitively restric-
tive, for sufficiently stiff filaments they are valid in a wide
range of segmental displacements.

For a thin straight segment of length L uniformly labeled
with linear density o of fluorophores,

o sin((1/2)gsL)

qg((l,s) = ’/_
T2 qs
o sin((1/2)gL cos a)
_ 7 , (5)
N2 g Ccos «

where « is an angle between q and s. Furthermore, we split
the segmental displacement into components parallel and
perpendicular to the segment Ar=Ar;+Ar |, we assume the
two components to be independent of each other and to be
Gaussian random variables. Then, for fixed q and s the en-
semble average of ¢ 4T is given by

q 0052 a 4 sm2 a

(Arf) - F——(Ar Q)

(6)

<e—iqAr(t)>‘q,S — exp(

The difference in the numeric prefactors in the two terms in
the Eq. (6) stems from the fact that Ary is defined on a line
(parallel to s), while Ar | is defined in a plane (perpendicular
to s).

We assume, as it is usually done for confocal setups, the
excitation-detection profile I(r) to be three-dimensional (3D)
Gaussian axisymmetric with respect to optical axis Z,

2 +y%) 27
I(r) =1, eXP<——2——2 , (7)
ny WZ
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~ Igw?w w? w2
I(q) = O—é"—z exp(— quz sin® 6 — Ezq cos? 0, (8)

where w,, and w, define the width of the profile in the XY
plane and in Z direction, respectively, and @ is an angle be-
tween q and Z axis.

Substituting (5), (6), and (8) into Eq. (4), averaging over
« for a given q and integrating over ¢, we have

o 1 1
d,
G(1) = —15 2Q202r7f dkf du f =4
0 -1 -1P
[ Nkp K
><s1n2<7)exp<— Zf(h2 ,h%,p,u)) , )

where u=cos 6, p=cos a, reduced units k=gw,,, A=L/w,,,
h? —(Ari)/wx), hﬁ (Arﬁ)/w , and w=w_/w,, were intro-
duced, and f denotes the following expression:

0% i pou) = B2 = p*(h% = 2h)) + u*(0® = 1) + 1. (10)

FCS correlation function is usually normalized by the
square of the average emission G,(1)=(dl,,(0)dl.,(1))/
(I,,)?. With this normalization the amplitude of the correla-
tion function at short time scales is the inverse of the average
number N of molecules in the detection volume (given by
! 2w2 w.): G(t—0)=1/N. Here we prefer another normal-
1zat10n G (1) ={ 1 (0) S (1)) [ {T ) =Ty G 1 (£). A correla-
tion function defined in this way is independent of the
concentration of the moving species (as long as there are
no interactions between the objects) and its amplitude at
short time scales gives the fluorescence per moving object:
G,(t—0)=(I,,)/N. This is an interesting quantity in the con-
text of labeled segments comparable or larger than w,,: in
this case only part of the labeled segment can “fit” into the
detection volume and contribute to the correlation function.
The length of this part can be estimated from G,(r— 0).

In order to calculate G,(z) we substitute c=noL and (7)
into (1) to find

(Le) = (m/2) LWy w. QL. (11)

Performing integration over k in (9) and making use of (11)
and of definition of G, we obtain

G,(1) = O'WW duf dp

><1—exp( Np?If(h’ . hi.p. u)
f(hphu’P,u)

Given the knowledge of the experimental geometry (i.e., pa-
rameters w,,, w., and L), Eq. (12) can be used to numerically
calculate the relation between the FCS correlation function
and temporal behavior of segmental MSDs, i.e., hzl(t) and
hi(r).

In two important limiting cases the explicit expressions
can be derived for G,(¢): (1) for very short labeled segments,
i.e., taking the limit L — 0 while keeping the total amount of
labels P=Lo finite, and (2) for very long labeled segments,
i.e., L— o0 while o=const.

In the case of short segments, we obtain

(12)
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IOQ Po
G —_—
()= 22 (1 + 1) (0 = D)2 =212

V(1 + 1) (@ + 202) + (0 = 1) (2 -2k
\e(1+2h Y w?+h? 1)

Xln

(13)

We note that for isotropic motion, i.e., for h> =2ht
=(Ar?)/ (3w2) Eq. (13) reduces to the more standard FCS
expression for the random motion of pointlike objects,

BT N ETET A

+
2 2
2V2 o 3 w;

G,(1) = 3w

For infinitely long segments Eq. (12) gives

2
1
N/, (15
1+h7

Note that G,(#) in this case is independent of A since longi-
tudinal motion of infinitely long labeled segments does not
lead to any fluctuations in fluorescence.

Although unrelated to our experiments, still an interest-
ing particular case of application of Eq. (15) is that of spheri-
cally symmetnc detection volume w,,=w,=w. In this case
G,(1)=v 77/8Q10w0'(1 +h? s 51m11ar to the correlation
function produced by a planar motion of pointlike objects.

We return now to Eq. (12) in order to find the depen-
dence of the fluorescence per moving object G,(z— 0) on the
length of the labeled segment. We make use of the fact that
for small segments L <w,,: G,(t— 0)=QI,oL/(2V 2) and de-
fine an apparent length L,,, and, respectively, A,

=L,pp/ Wy, such that for the labeled segment of any length
Gz(ta 0)=QlyoL,, /(2v2)

For t=0, i.e., hH h =0 it is possible to perform integra-
tion over u in Eq. (12) and arrive to the expression relating
the apparent length of the labeled segment to its actual length
and to the parameters of the detection volume,

!’_
|
OW O\ T

0l
G,(t)=—F arcta
(- D1+ )

1) —
)\app= ﬁl—ln(w+ \e’wz— 1)

“ d N
+ f —L()\w: erf(—) + ve_)‘z/”2> ,  (16)
1 U\”l)z—l v

where erf(x) =272 f)e"zdt.

An example of \,,,(\) dependence is shown in Fig. 1 for
w=5 corresponding to our experimental geometry. As ex-
pected for A <1, all of the segment can fit into the detection
volume and \,,,~\). For A> 1 the apparent length saturates
at the value which can be found from (15),

Napp(\ — ) = w\/ arctan w) - (17)

At this point we would like to discuss the validity of the
assumptions leading to Eq. (12). The main assumption we
made was to neglect the internal dynamics within the labeled
segment. This assumption, in fact, just puts a lower limit on
the accessible range of studied segmental displacements: the

J. Chem. Phys. 125, 084903 (2006)

FIG. 1. (Color online) Dependence of the apparent length of the labeled
segment on its real length as given by Eq. (16) for =5 (close to the aspect
ratio of the sampling volume in our setup). The lengths are given in the units
of confocal volume radius A=L/w,, Nypp=Lypp/ Wy, The apparent length of
very long A>1 segments approaches =2.5w,, lnset Ratio of the apparent
length to the real length of the labeled segment. Labeled segment lengths of

L<w,,(A<1) result in Lyy,~L.

derived equations are valid as long as the center-of-mass
motion Ar(z) of the segment is larger than the characteristic
motions within the segment.

The characteristic internal motions (ArZ,) within the la-
beled segment can be estimated to be of the order of
<A’"1m> (2/45)L3/l 4 For segmental displacements larger
than that, motions within the labeled part can be neglected
and the labeled segment can be considered essentially rigid
and moving as a single unit.

This condition seemingly prohibits studies with long la-
beled segments, which have considerable motions within
them. However, only a small part of the filament (of length

~Lypp,<<L) can cross the sampling volume and contribute
to the fluctuations in fluorescence at any given moment. Thus
the lower limit for the range of accessible segmental motions
can be further relaxed to (2/ 45)Lipp/ l,. For example, even
for very long homogeneously labeled actin filaments
(L>w,y, Lypp=2.5w,,) the segmental dynamics can be stud-
ied in the range (Ar?)>4X107* um?.

The expressions derived in this section [such as Egs.
(12), (13), and (15)] can be directly used to measure segmen-
tal displacements from FCS correlation functions: only the
parameters defining the experimental geometry [wxy, w,, and
in the case of Eq. (12) L in addition] need to be calibrated.
All other parameters affect G,(r— 0), the value of which can
be determined from the plateau level of the experimentally
measured correlation function at short time scales. Thus the
correlation function depends essentially on the monomer dis-
placements only hi and hﬁ Having two independent sets of
FCS measurements, e.g., on partially labeled and homoge-
neously labeled filaments, one should be able in principle to
determine each of the displacements hzl and hﬁ separately as
a function of time.

For our studies presented here, however, we will neglect
the longltudmal displacement h in comparison with trans-
verse motion h . Because of geometry of small deflections,
the internal dynamlcs of stiff filaments with lengths / smaller
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FIG. 2. (Color online) Calculated dependencies of FCS correlation function
on the transverse mean-square displacement of semiflexible polymer seg-
ment. FCS correlation functions are normalized by their zero-time values
(to have unit amplitude) and transverse MSD is given in the units of confo-
cal volume radius 1% =(Ar2)/ wf),. The dashed curve is given by standard
FCS expression Eq. (14) for isotropic motion. The other curves are calcu-
lated from Eq. (12) and its limiting cases, Eqgs. (13) and (15), for different
values of N\, left to right: 0, 1, 2, 5, 15, %. Inset: Same curves in semilog
scale allowing to assess wider range of hi.

than /, is largely transverse. Based mostly on geometrical
considerations Granek'* evaluates hﬁ~0.21(l/ lp)hQl [Eq.
(C.16) in Granek’s paper'* and those related to it]. For fila-
ments’ length of /~6 um as in our experiments and F-actin
persistence length /,~ 17 um, we thus expect the longitudi-
nal MSD to be an order of magnitude smaller than the trans-
verse MSD. Furthermore, considerations of tension propaga-
tion within the filament® lead to even smaller longitudinal
displacements over a wide range of internal dynamics. We
note that at long time scales, where monomer displacements
are dominated by the translational diffusion of the filament,
hﬁ and hzl should become comparable. However, most of the
range of our measurements and, actually, most of our interest
fall onto the range of internal filaments’ dynamics, where the
assumption of hf<hi is reasonably safe.

Then with known geometrical parameters and measured
G,(t—0), Eq. (12) and its limiting cases, Egs. (13) and (15),
give a one-to-one relation between segmental MSD and FCS
correlation function. Some examples of such dependence are
given in Fig. 2. Using these dependencies, the experimen-
tally measured correlation function G,(¢) can be converted
into the temporal dependence of segmental MSD (Ari(r))
(=2 1 (1)).

Finally, we note that the failure to take into account the
anisotropy of monomer motion in the calculation leads to the
relations between (Ar%(f)) and G(f) which may deviate sig-
nificantly from the correct ones. The problem is especially
severe for pointlike labeling of the filaments: compare the
dashed line in Fig. 2 for isotropic motion of pointlike sources
to the leftmost solid line for anisotropic motion of pointlike
labels. However, this problem is less severe for long labeled
stretches. Indeed, the theory developed by Winkler et al®
for their recent FCS measurements assumes isotropic mono-
mer motion, and thus their starting point is very different
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from ours. Nevertheless, for homogeneously labeled fila-
ments and for a particular case of polymer dynamic theory,
their expression for the correlation function [Eq. (50) in Win-
Kler et al. paper™] is similar to our Eq. (15) for L— . The
reasons for this agreement are quite clear: since the correla-
tion function for long homogeneously labeled segments is
essentially insensitive to longitudinal motion, the specific as-
sumptions about the magnitude of longitudinal MSD
(whether it is much smaller or is similar to transverse MSD)
make little difference. Thus with respect to anisotropy of
monomer motion, the analysis of data of Winkler et al. for
homogeneously labeled filaments is quite proper. However,
one should be cautious extrapolating their approach to par-
tially labeled filaments.

lll. MATERIALS AND METHODS
A. Actin preparation

Unlabeled actin is purified from chicken skeletal muscle
acetone powder and stored in G-buffer’’ Two sets of
samples are prepared: (1) filaments labeled at defined posi-
tions and (2) homogeneously labeled filaments.

In order to label the filaments at defined positions
(sample 1), we utilize fluorescently labeled actin filament
seeds as templates for additional polymerization of unlabeled
actin monomers. To prepare fluorescent seeds we first poly-
merize 1 uM of fluorescent G-actin (Actin Alexa 568, Mo-
lecular Probes, Eugene, OR, or rhodamine-actin, Cytoskel-
eton, Denver, CO) in the presence of phalloidin (Molecular
Probes) to stabilize the filaments (1:1 actin to phalloidin mo-
lar ratio). The labeled filaments are then broken by a brief
sonication and vigorous pipetting into short fragments (aver-
age length of ~170 nm, estimated by FCS, see Sec. IV).
These fragments are then used as seeds for further polymer-
ization of unlabeled G-actin (9 uM). Polymerization pro-
ceeds for 10 min at room temperature. We note that concur-
rent with polymerization, there is an ongoing annealing
process32 which both increases polymer length and creates
multiply labeled filaments. Independent fluorescence micros-
copy observation® confirms that at the beginning of the ex-
periment about 10% of filaments are labeled at two distinct
positions (typically separated by more than 1 wm), while the
rest are single labeled. Since the distance between the labeled
portions of the double-labeled filaments is much larger than
confocal radius (0.21 um), the “cross-talk” between the la-
bels can be neglected and the formalism derived in the pre-
ceding section can be applied.

The homogeneously labeled filaments (sample 2) are
prepared in a similar manner. The difference is that the seeds
are prepared from a mixture of labeled and unlabeled actin
monomers (1:9 molar ratio) and further polymerization pro-
ceeds with the same mixture.

This procedure results in actin filaments of several mi-
crons in length: ~4 wm on average at the beginning of the
experiment and growing in the course of experiment to
~8 um due to annealing, as verified by fluorescence
rnicroscopy.33

For the experiments, the solution is diluted tenfold to a
final actin concentration of 1 uM. Typically, 1 ul of solution
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is sealed between two glass coverslips separated by a
250 wm spacer. To prevent protein adsorption, the glass cov-
erslips are coated with an inert polymer (polyethylene gly-
col) according to the protocol of Perret et al.** Most of the
measurements were carried out at a distance of 40 um from
the surface. This distance was chosen on purpose to be larger
than F-actin length in order to minimize the effect of surface
proximity on filament dynamics. Control experiments per-
formed at a distance of 100 wm from the surface give results
identical to those presented here.

The experiments are started immediately after dilution
and are conducted within 30 min. The main reason to limit
the duration of experiment is to minimize the effect of actin
filament fragmentation, which leads to appearance of short
filaments and associated noise in the FCS correlation func-
tion. After ~1 h of FCS measurement we start to see the
changes in the MSD due to the fragmentation: the MSD
versus time curve shifts to larger displacements. To be on the
safe side, we limit all of our measurements to the first 30 min
after polymerization.

At monomer concentration used in our experiments
(1 uM) and for filament length in the 4—8 wm range, actin
polymer solution is near the crossover from the dilute to
semidilute regime.3 > Thus the actin filaments are expected to
interact only weakly. Estimations'*'> of the mesh size (¢
~ 1.4 um) and of the entanglement length (~2.3 wm) also
point to only weak entanglement of the filaments at the
scales of motion below 1 wm (so-called “loosely entangled”
regime of semiflexible polymer solution®).

B. Experimental setup

The optical setup is home-built based on the Nikon
Eclipse TE300 inverted microscope (Nikon Corporation, To-
kyo, Japan). The confocal excitation is provided by 514 nm
line (~2.5 uW power before microscope objective) of an
Ar-ion laser (Advantage 163D, Spectra-Physics, Mountain
View, CA) deflected by Q525 dicroic beam splitter (Chroma
Technology, Rockingham, VT) into a high-power objective
lens (UPLAPO 60X1.2W, Olympus Europe, Hamburg, Ger-
many). The collected emission passes through the beam
splitter, then a bandpass filter HQ565/80 (Chroma Technol-
ogy, Rockingham, VT) and a pinhole of 25 um in diameter.
The emission is detected by a photon counting avalanche
photodiode (SPCM- AQR-14 PerkinElmer Optoelectronics,
Vaudreuil, Quebec, Canada) whose output is fed into digital
correlator Flex2k-12Dx2 (Correlator.com, Bridgewater, NJ).
The correlator is capable of working in two modes, either as
traditional correlator carrying out the correlation analysis of
emission online, or as photon history recorder, storing the
time arrivals of every photon on computer hard drive. For the
presented experiments, we make use of the photon history
recorder mode, while analyzing the recorded photon traces
offline with software correlator as described in Sec. III. The
correlator program was written as C-MODULE running under
MATLAB environment (MathWorks, Natick, MA).

The parameters w,,~0.21 um, w,~1.1 um of the con-
focal volume are calibrated before and after each experiment
by measuring the diffusion of free Rh6G ﬂuorophores.28
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FIG. 3. (Color online) Photon count trace of partially labeled actin filaments
(sample 1). The photon trace is collected with 16.7 ns resolution and split
into 100 ms bins. The data points represent photon counts per bin. (a) Full
trace over the duration of one measurement, (b) zoom into first 30 s of
measurement. Bursts (dotted line) due to the passage of labeled parts are
separated by the intervals of background noise (solid line).

C. Data analysis

Sample 1. The measurement of the photon emission
count rate from locally labeled F-actin reveals that photons
arrive in intense bursts of ~10° counts/s lasting ~0.1-1 s
separated by intervals of low count rate of ~10* counts/s
(Fig. 3). The bursts are caused by the passage of the labeled
F-actin through the confocal volume. The fluorescence in
between the bursts originates from residual free fluorophores
diffusing in the sample. The motion of the free fluorophores
results in a correlated background noise I,(z) which adds
up with the labeled actin signal I(r) to a total emission I,y
=I/+I,. Thus the overall correlation function G(7)
=<6Ilot(0) 6Il0t(t)> is given by

Gioi(1) = G(1) + G(1), (18)

where G(1)=(5I(0)58I(r)) and G,(t)=(3I,(0)5I,(t)) are the
correlation functions of emission from labeled segments and
from free fluorophores, respectively.

Although the overall contribution of free fluorophores
G, to the total correlation function is small, their fast motion
is responsible for most of the decay of the correlation func-
tion at the time scales below 1 ms, where the motion of the
filament segments is negligible. This could limit the analysis
of monomers’ MSD to the time scales above 1 ms. However,
as shown below, it is possible to separate the contributions of
labeled actin and free fluorophores within the same experi-
ment, and thus, extend the range of measurements to time
scales as low as ~40 us.

In order to separate free fluorophore noise from the sig-
nal, we record the complete photon trace, i.e., times between
arrivals of consecutive photons (with temporal resolution of
16.7 ns). The photons are then binned into 100 ms intervals
{I(z,)} (Fig. 3). The stretches of time with no bursts are de-
termined and the background correlation function G,(7) is
calculated on these stretches using the original photon traces.
The total correlation function G(#) is computed using the
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FIG. 4. (Color online) Total G () (dotted line), background G,(z) (thin
solid line), and signal G(¢) (thick solid line) correlation functions of partially
labeled filaments (sample 1). G, (1) is obtained by analyzing the complete
photon trace, G,(f) is caused by the diffusion of free fluorophore and is
calculated from the photon trace in between the bursts in Fig. 3. G(r)
=G, (t)=G,(1) is the correlation function resulting from the motion of
F-actin labeled segments after background subtraction. The dashed line is
the correlation function of homogeneously labeled actin (sample 2) after
subtraction of background noise. The correlation function of sample 2 was
normalized to have the same amplitude as that of sample 1 in order to
facilitate the comparison of temporal behavior.

complete photon trace. Finally, the contribution of labeled
actin G(z) is obtained using Eq. (18). The intensity-
normalized correlation function of actin segments is found
by Gy(t)=G(1)/ (L~ 1)

We find this procedure more robust than the correlation
analysis of bursts intervals. First, there is some background
contribution within the bursts as well. Second, unlike bursts,
the intervals of pure background can be determined unam-
biguously: any intervals suspect to contain a burst can be
deselected.

Practically, the background is deduced by calculating the
median intensity over all bins I,,.;=median({/(z,)}) and se-
lecting all of the intervals which deviate from the median by
less than o=median({(1(t,)—1I,,.q)*}) for analysis of back-
ground noise. An example of this procedure is presented in
Fig. 3. The resulting total, background, and signal correlation
functions G (t), G,(t), and G(¢) are shown in Fig. 4. The
background correlation function G,(f) is indeed well de-
scribed by 3D diffusion model of the free ﬂuorophore28 with
a characteristic decay time of 70 us. We note that the ampli-
tude of G(r) is much larger than that of G,(¢) mainly due to
the multiple labeling of the filament segments: thus the mo-
tion of the labeled segments leads to much larger fluctuations
in emission than the motion of single fluorophore molecules.

For calculation of monomers’ MSD the amplitude of the
correlation function Go=G(t— 0) is estimated from the level
of the correlation function in 3—20 us range, which is above
the characteristic time scales of the fluorophore triplet state
kinetics and below the characteristic time scales of segmental
dynamics.

Sample 2. We use the same approach to analyze data
from homogeneously labeled F-actin. However, since the
passage of the labeled segments through the sampling vol-
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ume is more frequent in this case as compared to sample 1,
we make use of shorter binning intervals of 30 ms and we
pick the intervals with the average count rate not exceeding
I 1.q+0.250 for the analysis of background noise. These con-
ditions give a noise correlation function with characteristic
decay time below 100 us. The above parameters were found
to be optimal between less restrictive conditions, which lead
to a notable contribution of the signal in the estimated noise
correlation function (characterized by decay times exceeding
1 ms), and more restrictive parameters, which clearly under-
estimate the noise level.

IV. RESULTS AND DISCUSSION

FCS correlation functions. We present the correlation
functions obtained from both types of samples in Fig. 4. To
facilitate the comparison of temporal kinetics, the amplitude
of the correlation function of homogeneously labeled actin
was adjusted to the level of the correlation function of the
partially labeled sample. The functions look similar but are
notably shifted in time: the correlation function of the homo-
geneously labeled sample decays slower by a factor of ~1.4
than that of the locally labeled F-actin.

Estimation of apparent lengths. We can estimate the
length of the labeled parts of sample 1 by analyzing the
amplitude of its intensity-normalized correlation function
G,(r—0). G, amplitude is 62+8 times higher than the cor-
responding amplitude of the correlation function of G-actin
monomers obtained in similar conditions (data not shown).
Since 14 actin monomers form a filament of 37 nm, this
gives the apparent length of the labeled segment of Ly,
~ 16020 nm. Converting L,,, into real segment length [Eq.
(16) and Fig. 1] we obtain L= 170+30 nm.

The apparent length of homogeneously labeled F-actin is
~470 nm=2.3w,,, as estimated from the amplitudes of the
corresponding correlation functions. This value is in a good
agreement with our expectations for long homogenously la-
beled filaments [Eq. (16) and Fig. 1].

Monomer MSD. Since the correlation function for homo-
geneously labeled filaments is essentially insensitive to lon-
gitudinal displacement, the transverse monomer MSD can be
directly determined from G,(¢) in the case of sample 2. For
partially labeled sample (sample 1), as discussed above, in
order to extract the <Ari(t)) dependence from the correlation
functions we neglect the longitudinal motion of the seg-
ments.

Although the general expression Eq. (12) can be used to
analyze both sets of data, the numerical calculation shows
that for L<w,, (i.e., A\<1) Eq. (12) leads to essentially the
same dependence of the correlation function G, on MSD as
Eq. (13) derived for L—0 (Fig. 2). Since in the case of
partially labeled filaments the length of the labeled part
(~170 nm) is smaller than w,,~210 nm, Eq. (13) can be
used to calculate monomer MSD. Similarly, for homoge-
neously labeled filaments with length larger than 3 um (A
=L/w,,>15), Eq. (15) for infinitely long labeled segment
can be used (compare curves for A > 15 and A — < in Fig. 2).
Thus we make use of the explicit expressions Egs. (13) and
(15), to analyze the data on partially and homogeneously
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FIG. 5. (Color online) The kinetics of random motion (Ari(t)) of actin
filaments” segments. Experimental measurements on locally labeled (full
circles) and on homogeneously labeled (open circles) are compared to the
theoretical predictions. Solid line: hydrodynamic theory of Kroy and Frey
(Ref. 15). Dashed lines (top to bottom): hydrodynamic theories of Harnau
et al. (Ref. 12), of Granek (Ref. 14) and nonhydrodynamic theory. The
parameters used for the calculation are /,=17 wm, filament diameter of
7 nm, solvent viscosity 1 mPas, and filament length of 6 um.

labeled polymers, respectively. For clarity, we rewrite these
expressions in the form they are used for data analysis

Gy(7) w
Gyt —0)  \(1+ ) (® = 1)1,

\/(1 + hi)w2 + \"/(w2 - 1)/12l
n

X1 (19)
Vol + n
for partially labeled samples, and
G,(h%) 1 -1
G0 7 5 5 arctan 3
2t—0) V1 +4% arctanyo® - 1 1+h7
(20)

for homogeneously labeled samples.

Practically, in both cases we set w=w_/w,, to the value
determined in the setup calibration (see Sec. IIT) and tabulate
G,(h’)/G,(t—0) for a wide range of 4’ as exemplified in
Fig. 2 (curves for A=0 and \ — o). We normalize the experi-
mentally obtained correlation functions G,(z) by their plateau
values. We use tabulated Gz(hi)/ G,(0) dependencies to find
hi values corresponding to each measured data point G,(r).
This gives the h%(r) dependence [and, respectively,
(AP () =w? 1 (1))

The extracted temporal dependencies of transverse
monomer motion are presented in Fig. 5. The data span a
wide range of time scales: from ~40 us to ~2 s. Despite
the difference in the temporal behavior of the original corre-
lation functions for partially and homogeneously labeled fila-
ments, the application of the appropriate expressions for each
case leads to consistent data on monomers dynamics for both
sets of measurements. The data for the two samples essen-
tially coincide up to ~0.3 s. At t=0.3 s, the data for par-
tially labeled sample exhibit somewhat larger displacements
than those for homogeneously labeled sample, probably in-
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dicating the effect of longitudinal diffusion in this range of
time scales. We note that the longitudinal displacement is not
equivalent to the difference in MSD in two data sets. In
principle, it could be calculated from the measured correla-
tion function of partially labeled sample using Eq. (12) to-
gether with (Ari(t)) obtained on homogeneously labeled
sample. We are reluctant, however, to perform the calcula-
tion of (Arﬁ) at this stage: the difference between (Ar? (1))
calculated from two sets of data is not so large and, in addi-
tion, the (unknown) dispersion in the lengths of the labeled
parts of sample 1 may significantly influence the result of
such calculation (the effect of this dispersion on the calcula-
tion of transverse displacement is much smaller). Finally, we
are not sure whether in this range the problem of separation
of (Ari) and (Arﬁ) is well defined. (See discussion of Fitting
data in the whole range further on.)

The monomers” MSD temporal dependence is close to
(Ari}txtmgio'm kinetic law for time scales below ~0.2 s
and deviates from this dependence at longer times apparently
due to the onset of the regime of translational diffusion of the
filaments. Indeed, at the long time scales MSD kinetics is
close to (Ari) ot

Comparison to theories. Several theories predict mono-
mer kinetics to follow (Ar2l>0<t0'75 law or very similar
dependence.lo*ls’37 There are differences in the predicted
prefactors depending on the way the hydrodynamic interac-
tions and boundary conditions are taken into account. In Fig.
5 we compare our results to several of the theories which
give explicit expressions or detailed prescriptions on calcu-
lating (Ar*()) dependence.

Simple treatments of the dynamics13 taking into account
the filaments’ elasticity and local friction of polymer seg-
ments in solution and neglecting hydrodynamic interactions
between segments leads to

knT 3/4
(AP?) = 0.31<%t> , (21)
)

where # is solvent viscosity. While the numeric prefactor in
Eq. (21) may slightly vary for different nonhydrodynamic
theories, in general, nonhydrodynamics theories underesti-
mate the segmental kinetics by a large factor [e.g., lower
dashed line in Fig. 5 is given by Eq. (21) with »=1 mPas,
1,=17 pm, and T=293 K].

Interestingly, even a simplified account for the hydrody-
namic interactions within the filament leads to a good agree-
ment between theory and the experimental results. Kroy and
arrive at an expression similar to Eq. (21). How-
ever, they take into account hydrodynamic interactions by
rescaling segmental friction coefficient by In(&,/a), where &,
roughly corresponds to the polymer mesh size ¢ while a is
filaments’ diameter (a=7 nm for bare F-actin)

kpT In(&,/a) )3’4. 22)

<A”2L> = 023( 77ll/s
P

The curve (solid line) predicted by the above equation with
é=1.4 um corresponding to our experimental situation
passes right through the experimental data points at the time
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scales below ~10 ms and deviates from them slightly at
longer time scales.

Granek'* takes explicitly into account the hydrodynamic
interactions between the distant segments and predicts a
log() correction to the power law,

kyTl, In(l/7a) } kT )3/4’ 23)

2\
(Ar)) = 0.082<ln{ 4 7 STE
P

mNa

where [/ is the polymer contour length. The middle dashed
line in Fig. 5 is given by Eq. (23) with typical filaments’
length /=6 um [while it might be more appropriate to sub-
stitute the value of £ instead of [ in this case, in view of the
double logarithmic dependence of (Ari(t)) on [, the precise
value of [ is of minor importance]. The theoretical predic-
tions seem to grasp correctly the slope of the experimentally
obtained curve and are offset by a small and almost constant
factor (~20%) in the whole range below 100 ms.

Harnau et al. incorporate hydrodynamic interactions in
another variant of their theory.12 While Harnau et al. do not
derive an explicit expression for (Ar*(1)), they give detailed
instructions on calculating monomers’ MSD by summing up
temporal correlation functions of normal modes of a fluctu-
ating filament. The expressions for normal modes and their
relaxation times are presented.12 The normal mode relaxation
times depend on the strength of hydrodynamic interactions
which are evaluated by integrating preaveraged Rotne-Prager
tensor™® for hydrodynamic interactions for each normal mode
over the length of a polymer. The upper dashed line in Fig. 5
is the result of our calculation of Harnau ef al.'> model for
the MSD of a monomer in the interior of the filament. As
above, parameters 7=1 mPas, lp=17 um, T=293 K, |
=6 um, and a=7 nm were used for solvent viscosity, fila-
ment persistence length, temperature, filament length, and
filament diameter, respectively.3 ? The calculated curve has a
temporal dependence similar to that of the data and to the
curve obtained from Granek theory.'4 However, quantitative
agreement between the experimental data and the theory of
Hamnau et al'® is poor, with theory overestimating
monomers’MSD by a factor of ~2 (see comment in Ref. 40).
The disagreement between data and theory in this case can
be traced to the fact that the theory of Harnau et al.’? is
aimed at describing the dynamics of long semiflexible poly-
mers at the scales larger than polymer persistence length.
Thus it can be expected to perform poorly in the case of
motions below /, as in the presented measurements. In par-
ticular, the theory of Harnau et al.'* assumes a Gaussian
chain at all the length scales, while the filaments at the scale
<l, are rather linear. This leads to the overestimation of
hydrodynamic interactions in the preaveraging approxima-
tion and as a result to the overestimation of monomers MSD.

Interestingly, the analysis of FCS data of Winkler et al.”
on actin filaments is based on the theory of Harnau et al.,"?
and they use the characteristic time scale as one of the free
parameters in their fitting procedures. A likely reason for the
need to adjust the characteristic time scale is the overestima-
tion of the hydrodynamic interactions discussed above.

Fitting data in the whole range. We mentioned already
that the experimental MSD curves exhibit two regimes, that
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of internal dynamics with (Ar? Yo7 and translational dif-
fusion with (Ar? yocr. Thus it is tempting to fit the experi-
mental data in the whole accessible range with the expres-
sions which include both the filaments’ internal dynamics
and the translational diffusion. We do this with one important
reservation: at long time scales, where translational diffusion
takes over internal modes, the rotational diffusion of the
whole filament may not be negligible either. We expect then
that for monomer MSD =1 um? some of the assumptions of
our calculations may be valid only marginally, e.g., even the
very concept of separation of transverse and longitudinal dis-
placements may be ill defined at this scale of motion. Nev-
ertheless, the fitting procedure in the whole range of data is
not completely meaningless either: since the assumptions of
the calculation just start to break down in the final decade of
the probed time scales we would expect the fitted values of
the diffusion coefficients to be at least reasonable (say cor-
rect within a factor of ~2-3).

The diffusion regime starts where the internal modes
saturate. Thus one cannot use the integral approximations of
type, Egs. (22) and (23), to describe the internal dynamics in
the whole range. Instead, the kinetics of all of the internal
modes have to be summed up properly taking into account
their eventual saturation. We did such fits for the three hy-
drodynamic theories already discussed in this section.

For Granek'* and Kroy and Frey15 theories the complete
expressions for monomer MSD can be written in the follow-
ing form:

43 51
(A y=——2> — (1 —exp(~t/7,)) +4D 1, (24)
Tl n

pn=1

where D | is the diffusion coefficient of the polymer in trans-
verse direction and 7, is the set of relaxation times of the
normal modes (harmonic functions in both of the models).
Our understanding is that the rotational diffusion would
present itself in our measurements as an additional term in
the transverse displacement of a segment. Thus it is possible
that D |, in fact, as calculated from our data carries both the
kinetics of transverse and of rotational diffusions. In Granek
theory the relaxation times depend on polymer length / and
persistence length [,

B 4yt
n= 7'r3kBTl,, n* In(L/mna)’

(25)

whereas the expression for 7, in Kroy and Frey theory]5
involves, in addition, the characteristic length &, of hydrody-
namic screening by the mesh,
4yt
T, = .
mkgTl, n* In(§,/a)

(26)

In the case of Granek theory a good fit to the data with
Eqgs. (24) and (25) is achieved by using only two free param-
eters: the polymer length / and the diffusion coefficient D | .
All other parameters are set to the same values before
(=1 mPas, [,=17 pm, T=293 K, and a=7 nm). The solid
line in Fig. 6 is a fit to the data on homogeneously labeled
filaments with fit parameters [/=2.25+0.03 um and D
=0.52+0.01 um?s~! (here and further the values of the fit
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FIG. 6. (Color online) Theoretical fits to the experimental measurements of
monomers’ MSD Circles: data on homogeneously labeled actin filaments.
Solid line: fit with Granek theory (Ref. 14). Fit line with the theory of
Harnau et al. (Ref. 12) is almost indistinguishable from the solid line and is
not drawn. Dashed line: fit with the theory of Kroy and Frey (Ref. 15). See
text for the fitting parameters and discussion.

parameters to sample 2 data are given; the fits to sample 1
data give similar quality of fits and similar parameters). The
fit is good overall, deviating slightly downwards from the
data in the range around 100 ms. Thus fit somewhat shifts a
crossover from internal dynamics to diffusion kinetics to-
wards smaller time scales, which results in some underesti-
mation of the filaments’ length /. While the quality of the fit
can be improved by invoking additional fitting parameters,
we do not find this approach warranted by our data. The
value of D allows to make an independent assessment of the
filaments’ length. In the framework of Granek theory the
relation between D, and [ is D | =kzT In(I/a)/(47nl). For
D, =0.52 um?s~! this gives /~3.9 um, the value which is
lower but roughly consistent with our fluorescence micros-
copy observations. The fact that fit to monomers” MSD un-
derestimates / is probably a consequence of a wide distribu-
tion of filaments’ length: the crossover range between
internal and diffusion dynamics as well as the kinetics in the
translational diffusion regime as measured by FCS are likely
to be biased more by the smaller filaments in the distribution.
Equations (24) and (26) of Kroy and Frey theory carry
three possible fitting parameters [, &,, and D . In order
to reduce the number of fitting parameters we use the expres-
sion for D, consistent with their theory: D,
=kgT In(§,/a)/ (47nl), leaving us with two free fitting pa-
rameters: [ and §,. With the parameter values of !
=2.70+£0.05 um and &,=0.43+0.02 wm the quality of the fit
(dashed line in Fig. 6) is very close to that of the fit with
Granek theory: Kroy and Frey theory fits the data somewhat
better in the range around 100 ms, while Granek theory per-
forms slightly better around 1 s. Like in the case of Granek
theory the estimated filaments’ length is somewhat smaller
than that measured by fluorescence microscopy. The value of
&, obtained from the fit is about thrice smaller than the esti-
mated mesh size £~ 1.4 wm and is certainly reasonable.
The monomers’ MSD in the theory of Harnau et al. 12 can
be expressed in a way similar to Eq. (24). However, the
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mode amplitudes and their relaxation times are different,
since the normal modes themselves are different from those
used by Kroy and Frey15 and Granek.'"* We were able to
obtain a good fit to the experimental data with the theory of
Harnau e al. using three fitting parameters: filaments’ length,
persistence length, and the diffusion coefficient. The fitting
line is virtually indistinguishable from that of Granek theory
and thus is not drawn in Fig. 6. While the fit values of fila-
ments’ length (8.6+0.1 um) and of diffusion coefficient
(0.35+0.01 wm?s~!') are rather reasonable, the F-actin per-
sistence length is overestimated by a large margin
(270+10 wm). This overestimation appears to be solely the
result of the overestimation of hydrodynamic interactions
which we discussed above: the dependence of monomers’
MSD on the persistence length is rather weak (Ari(t))
Ml;m [e.g., Eq. (21)] and the overestimation of hydrody-
namic interactions by a factor of 2 would require fit value of
L,=17X 24~270 um to compensate for the mistake.

Thus we find that the use of the theory of Harnau et al.”?
is inappropriate to describe the dynamics of stiff polymer
chains below persistence length. As already mentioned, this
is not really surprising since the theory12 was designed for
[>1, case. Remarkably though, the theory of Harnau et al.
also fails to describe our data on the end-labeled DNA
polymers18 for which />, condition is well satisfied. In the
range of time scales =3 ms the end-monomer dynamics in
DNA is seemingly unaffected by the hydrodynamic interac-
tions between DNA segments, the feature which is not repro-
duced by the theory of Harnau et al. An interesting question
(for which we have no answer) is whether the overestimation
of the hydrodynamic interactions by theory at the scale be-
low [, could manifest itself also at the larger length scales.

Both Granek'* and Kroy and Frey15 theories describe our
data well with only two fitting parameters and with the rea-
sonable values of these parameters. Thus we are unable to
make a choice between the two theories at this time. In fact,
there is no essential contradiction between these two theo-
ries, they are rather similar, e.g., in their choice of normal
modes. While in Granek theory (more precisely, the part of
the theory that we make use of) the monomer motion is
essentially uninhibited by the mesh, Kroy and Frey theory
considers the polymer dynamics to be essentially affected by
hydrodynamic screening properties of the mesh. For the
loosely entangled regime such as in our measurements, both
possibilities look rather plausible to us. The situation could
be helped by having a theory relating the hydrodynamics
screening length &, to the mesh size & Knowing which of
these lengths is larger than the other could help to decide in
the favor of one of the two theories in our experimental
situation. On the experimental side, the measurements of
F-actin dynamics at different monomer concentrations will
help to resolve the issue.

Finally, we would like to return the question of longitu-
dinal displacement versus transverse displacement. The con-
sistence of the monomer MSDs calculated from FCS mea-
surements on samples 1 and 2 under assumption (Arﬁ>=0
indicates the that longitudinal displacements are indeed
small: (Ar;)<(Ar% (1)) (at least in the time range <0.3s).
As discussed, we roughly expected this result based on the
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considerations of filaments’ stiffness. Admittedly, the agree-
ment between the two sets of MSD data appears to be some-
what “too perfect” not allowing for any significant longitu-
dinal displacement. It is possible that there are some
additional (apart from filaments’ stiffness) constrains on the
longitudinal displacement. However, not having any further
evidence we would like to avoid speculating on this issue.

To conclude, we adapt FCS formalism for the studies of
the internal dynamics of semiflexible polymers. The formal-
ism is based on the statistical properties of the filaments
(their stiffness) and does not involve any specific model of
polymer dynamics. The expressions relating monomers’
MSD to FCS correlation functions are thus derived in a
model-independent way. We make use of a developed for-
malism to obtain noninvasive measurements on the kinetics
of segmental motion in actin filaments. Two labeling strate-
gies, local labeling and homogeneous labeling, lead to con-
sistent results. The transverse segmental MSD (Ari(t)) is
probed over a wide range of timescales, from ~40 us to
~2 s. Almost over the whole range the data points follow
closely the prediction of hydrodynamic theories."*'> Thus,
noninvasive measurements of (Ar3(f)) carried out with FCS
allow us to test hydrodynamic theories directly over a wide
temporal range.
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